Tracer and Nontracer Potassium Fluxes in Squid Giant Axons and the Effects of Changes in External Potassium Concentration and Membrane Potential

نویسندگان

  • R. A. Sjodin
  • L. J. Mullins
چکیده

The efflux of labeled and unlabeled potassium ions from the squid giant axon has been measured under a variety of experimental conditions. Axons soaked in sea water containing 42K ions lost radioactivity when placed in inactive sea water according to kinetics which indicate the presence of at least two cellular compartments. A rapidly equilibrating superficial compartment, probably the Schwann cell, was observed to elevate the specific activity of 42K lost from such axons to K-free sea water for a period of hours. The extra radioactive potassium loss from such axons during stimulation, however, was shown to have a specific activity identical within error to that measured in the axoplasm at the end of the experiment. The same was shown for the extra potassium loss occurring during passage of a steady depolarizing current. Axons placed in sea water with an elevated potassium ion concentration (50 mM) showed an increased potassium efflux that was in general agreement with the accompanying increase in membrane conductance. The efflux of potassium ions observed in 50 mM K sea water at different membrane potentials did not support the theory that the potassium fluxes obey the independence principle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tracer and Nontracer Potassium Fluxes

The efflux of labeled and unlabeled potassium ions from the squid giant axon has been measured under a variety of experimental conditions. Axons soaked in sea water containing K ions lost radioactivity when placed in inactive sea water according to kinetics which indicate the presence of at least two cellular compartments. A rapidly equilibrating superficial compartment, probably the Schwann ce...

متن کامل

Effects of the dipolar form of phloretin on potassium conductance in squid giant axons.

The effects of phloretin on membrane ionic conductances have been studied in the giant axon of the squid, Loligo pealei. Phloretin reversibly suppresses the potassium and sodium conductances and modifies their dependence on membrane potential (Em). Its effects on the potassium conductance (GK) are much greater than on the sodium conductance; no effects on sodium inactivation are observed. Inter...

متن کامل

Effects of External Ions on Membrane Potentials of a Lobster Giant Axon

The effects of varying external concentrations of normally occurring cations on membrane potentials in the lobster giant axon have been studied and compared with data presently available from the squid giant axon. A decrease in the external concentration of sodium ions causes a reversible reduction in the amplitude of the action potential and its rate of rise. No effect on the resting potential...

متن کامل

Some Relations between Action Potential and Resting Potential of the Lobster Giant Axon

Experiments were performed to determine the quantitative relation existing between action potential and resting potential of the lobster giant axon. Resting potential changes were induced by either increasing the external potassium concentration or by reducing the external calcium concentration. For either treatment the action potential amplitude is proportional to the logarithm of the resting ...

متن کامل

The Efflux of Potassium from Electroplaques of Electric Eels

1. The movement of labeled potassium ions has been measured across the innervated membranes of single isolated electroplaques, obtained from the organ of Sachs of Electrophorus electricus, mounted in an apparatus which allowed a separate washing of the two membranes. 2. Equations have been derived for a 3 compartment system in series in which tracer from a large pool in one outer compartment is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 50  شماره 

صفحات  -

تاریخ انتشار 1967